On the finiteness conditions of the set of intermediate rings

von Nabil, Zeidi
Zustand: Neu
€ 51,30
inklusive MwSt. - GRATIS LIEFERUNG
Nabil, Zeidi On the finiteness conditions of the set of intermediate rings
Nabil, Zeidi - On the finiteness conditions of the set of intermediate rings

Dir gefällt dieses Produkt? Sag's weiter!

€ 51,30 inkl. USt.
Nur noch 1 Stück verfügbar Nur noch 1 Stück verfügbar
Lieferung: zwischen 2021-05-25 und 2021-05-27
Verkauf & Versand: Dodax EU


This book comes within the scope of Commutative Algebra and studies problems related to the finiteness conditions of the set of intermediate rings. Let S be a ring extension of R and R the integral closure of R in S. We first characterize minimal extensions and give a special chain theorem concerning the length of an arbitrary maximal chain of rings in [R,S], the set of intermediate rings. As the main tool, we establish an explicit description of any intermediate ring in terms of localization of R (or R ). In a second part, we are interested to study the behavior of [R,S]. Precisely, we establish several necessary and sufficient conditions for which every ring contained between R and S compares with R under inclusion. This study answers a key question that figured in the work of Gilmer and Heinzer ['Intersections of quotient rings of an integral domain', J. Math. Kyoto Univ. 7 (1967), 133-150]. Our final contributions are the FIP extensions. This kind of extensions was considered to generalize the Primitive Element Theorem. We give a complete generalization of the last cited theorem in the context of an arbitrary ring extension.


Nabil, Zeidi

Weitere Informationen

Zeidi Nabil grew up in Kairouan (Tunisia). He attended the University of Sfax, where he received his B.Sc. in Mathematics in 2010. There he also received his Master of science in pure Mathematics in 2012. He then received his Doctorate in Mathematics from the university of Sfax in 2017.
Éditions universitaires européennes


Produkttyp :
0.22 x 0.15 x 0.005 m; 0.186 kg
€ 51,30
Wir nutzen Cookies auf unserer Website, um deinen Besuch effizienter zu gestalten und dir mehr Benutzerfreundlichkeit bieten zu können. Klicke daher bitte auf "Cookies akzeptieren"! Nähere Informationen findest du in unserer Datenschutzerklärung.